Abstract

Using a semi-discrete model that describes the heat transfer of a continuous casting process of steel, this paper is addressed to an optimal control problem of the continuous casting process in the secondary cooling zone with water spray control. The approach is based on the Hamilton---Jacobi---Bellman equation satisfied by the value function. It is shown that the value function is the viscosity solution of the Hamilton---Jacobi---Bellman equation. The optimal feedback control is found numerically by solving the associated Hamilton---Jacobi---Bellman equation through a designed finite difference scheme. The validity of the optimality of the obtained control is experimented numerically through comparisons with different admissible controls. Detailed study of a low-carbon billet caster is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.