Abstract

In the paper, our main aim is to investigate the strong convergence of the implicit numerical approximations for neutral-type stochastic differential equations with super-linearly growing coefficients. After providing mean-square moment boundedness and mean-square exponential stability for the exact solution, we show that a backward Euler–Maruyama approximation converges strongly to the true solution under polynomial growth conditions for sufficiently small step size. Imposing a few additional conditions, we examine the p-th moment uniform boundedness of the exact and approximate solutions by the stopping time technique, and establish the convergence rate of one half, which is the same as the convergence rate of the classical Euler–Maruyama scheme. Finally, several numerical simulations illustrate our main results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.