Abstract

Single vacuum bubble collapse in subcooled water has been simulated using the moving particle semi-implicit (MPS) method in the present study. The liquid is described using moving particles, and the bubble-liquid interface was set to be the vacuum pressure boundary without interfacial heat mass transfer. The topological shape of the vacuum bubble is determined according to the location of interfacial particles. The time dependent bubble diameter, interfacial velocity, and bubble collapse time were obtained within a wide parametric range. Comparison with Rayleigh’s prediction indicates a good consistency, which validates the applicability and accuracy of the MPS method. The potential void-induced water hammer pressure pulse was also evaluated, which is instructive for the cavitation erosion study. The present paper discovers fundamental characteristics of vacuum bubble hydrodynamics, and it is also instructive for further applications of the MPS method to complicated bubble dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.