Abstract

Variable stepsize algorithms for the numerical solution of nonlinear Volterra integral and integro-differential equations of convolution type are described. These algorithms are based on an embedded pair of Runge–Kutta methods of order p=5 and p=4 proposed by Dormand and Prince with interpolation of uniform order p=4. They require O(N) number of kernel evaluations, where N is the number of steps. The cost of the algorithms can be further reduced for equations that have rapidly vanishing convolution kernels, by using waveform relaxation iterations after computing the numerical approximation by variable stepsize algorithm on some initial interval.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.