Abstract
This paper presents an original formulation of two-point boundary value and eigenvalue problems expressed as a system of first-order equations. The fundamental difference between the new method and other methods based on a first-order approach is the introduction of conditions of an integral character to supplement the simultaneous set of first-order equations, which are hence never regarded as an initial value problem. The consideration of integral conditions leads to establish a class of linear multipoint schemes for the numerical solution of boundary value problems for ordinary differential equations. Furthermore, the global character of the integral conditions (nonlocality) combined with the block structure of the system of algebraic equations allow dealing with stiff problems by means of the classical procedure of iterative refinement introduced by Wilkinson. The properties of the numerical schemes are illustrated by the solution of linear and nonlinear problems and by the accurate and efficient determination of some eigensolutions of a difficult problem of hydrodynamic stability. The proposed method is conceptually simpler and numerically more convenient than existing initial value methods, while still retaining all the advantages of a formulation based on a first-order system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.