Abstract
This work deals with the numerical solution of hypersonic flow of viscous fluid over a compressible ramp. The solved case involves very important and complicated phenomena such as the interaction of the shock wave with the boundary layer or the transition from a laminar to a turbulent state. This type of problem is very important as it is often found on re-entry vehicles, engine intakes, system and sub-system junctions, etc. Turbulent flow is modeled by the system of averaged Navier–Stokes equations, which is completed by the explicit algebraic model of Reynolds stresses (EARSM model) and further enhanced by the algebraic model of bypass transition. The numerical solution is obtained by the finite volume method based on the rotated-hybrid Riemann solver and explicit multistage Runge–Kutta method. The numerical solution is then compared with the results of a direct numerical simulation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.