Abstract
This paper proposes the numerical solution of three-dimensional Laplacian problems based on the multiple scale Trefftz method with the incorporation of the dynamical Jacobian-inverse free method. A numerical solution for three-dimensional Laplacian problems was approximated by superpositioning T-complete functions formulated from 18 independent functions satisfying the governing equation in the cylindrical coordinate system. To mitigate a severely ill-conditioned system of linear equations, this study adopted the newly developed multiple scale Trefftz method and the dynamical Jacobian-inverse free method. Numerical solutions were conducted for problems involving three-dimensional groundwater flow problems enclosed by a cuboid-type domain, a peanut-type domain, a sphere domain, and a cylindrical domain. The results revealed that the proposed method can obtain accurate numerical solutions for three-dimensional Laplacian problems, yielding a superior convergence in numerical stability to that of the conventional Trefftz method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.