Abstract

ABSTRACTThe pair functions that minimise the correlation energy of second-order many-body perturbation (MP2) theory (the Hylleraas functional) are obtained as solutions to the corresponding Sinanoǧlu equation by expanding them on a six-dimensional, multicentre, radial-angular grid of two electrons. Cusps in the pair functions at the nuclei are described numerically accurately by the multicentre grid. A cusp in each singlet pair function at the coalescence of the two electrons is taken into account analytically by a correlation factor. With a grid of approximately 10,000 points per atom, the MP2 correlation energies for atoms and polyatomic molecules are obtained usually within 0.1 mEh of the complete-basis-set results. The correlation factor, auxiliary basis functions, and a judicious choice of integration algorithms are all necessary to stabilise the grid-based MP2 and underlying Hartree–Fock (HF) calculations. The auxiliary basis set, in particular, largely restores the hermiticity and diagonal dominance of the Fock matrix as well as furnishes virtual orbitals used in a resolution-of-the-identity approximation to lower the dimension of some integrals. The results of the grid-based HF and MP2 calculations without a correlation factor are found to suffer from large, nonsystematic errors frequently.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.