Abstract

There are various methods to solve the physical life problem involving engineering, scientific and biological systems. It is found that numerical methods are approximate solutions. In this way, randomly generated finite difference grids achieve an approximation with fewer iterations. The idea of randomly generated grids in cartesian coordinates and polar form are compared with the exact, iterative method, uniform grids, and approximate solutions in a generalized expansion form of two-dimensional fractional-order Legendre functions. The most ideal and benchmarking method is the finite difference method over randomly generated grids on Cartesian coordinates, polar coordinates used for numerical solutions. This concept motivates the investigation of the effects of the randomly generated meshes. The two-dimensional equation is solved over randomly generated meshes to test randomly generated grids and the implementation. The feasibility of the numerical solution is analyzed by comparing simulation profiles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call