Abstract
Some nonlinear wave equations are more difficult to solve analytically. Exponential Time Differencing (ETD) technique requires minimum stages to obtain the required accurateness, which suggests an efficient technique relating to computational duration that ensures remarkable stability characteristics upon resolving the nonlinear wave equations. This article solves the non-diagonal example of Fisher equation via the exponential time differencing Runge-Kutta 4 method (ETDRK4). Implementation of the method is demonstrated by short Matlab programs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.