Abstract

AbstractWe present a robust and efficient numerical method for solution of the nonlinear Poisson‐Boltzmann equation arising in molecular biophysics. The equation is discretized with the box method, and solution of the discrete equations is accomplished with a global inexact‐Newton method, combined with linear multilevel techniques we have described in an article appearing previously in this journal. A detailed analysis of the resulting method is presented, with comparisons to other methods that have been proposed in the literature, including the classical nonlinear multigrid method, the nonlinear conjugate gradient method, and nonlinear relaxation methods such as successive overrelaxation. Both theoretical and numerical evidence suggests that this method will converge in the case of molecules for which many of the existing methods will not. In addition, for problems which the other methods are able to solve, numerical experiments show that the new method is substantially more efficient, and the superiority of this method grows with the problem size. The method is easy to implement once a linear multilevel solver is available and can also easily be used in conjunction with linear methods other than multigrid. © 1995 by John Wiley & Sons, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.