Abstract

AbstractThis study was undertaken to ascertain the accuracy of finite‐difference solutions for flow around spherical particles in the intermediate Reynolds number range. Comparison of the results with experimental data on drag coefficients, frontal stagnation pressure, and wake geometry indicated good agreement. The approximate solutions, in which the Galerkin method and asymptotic analytical predictions were utilized, were evaluated by using the finite‐difference solutions as a standard. These methods were used to calculate the effect of uniform and nonuniform mass efflux on the drag and flow characteristics around a sphere. Theoretical solutions indicated that nonuniform mass efflux can significantly reduce the drag on a submerged object. Ranges of applicability of the approximate methods were established.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call