Abstract
A numerical procedure to solve the linearized Boltzmann equation with an arbitrary intermolecular potential by the discrete velocity method is elaborated. The equation is written in terms of the kernel, which contains the differential cross section and represents a singularity. As an example, the Lennard-Jones potential is used and the corresponding differential cross section is calculated and tabulated. Then, the kernel is calculated so that to overcome its singularity. Once, the kernel is known and stored it can be used for many kinds of gas flows. In order to test the method, the transport coefficients, i.e. thermal conductivity and viscosity for all noble gases, are calculated and compared with those obtained by the variational method using the Sonine polynomials expansion. The fine agreement between the results obtained by the two different methods shows the feasibility of application of the proposed technique to calculate rarefied gas flows over the whole range of the Knudsen number.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.