Abstract

We performed an extensive numerical analysis of the Holstein model. Combining variational Lanczos diagonalisation, density matrix renormalisation group, kernel polynomial expansion, and cluster perturbation theory techniques we solved for properties of the Holstein polaron and bipolaron problems. Numerical solution of the Holstein model means that we determined the ground-state and low-lying excited states with arbitrary precision in the thermodynamic limit for any dimension. Moreover, we calculated the spectral properties (e.g. photoemission and phonon spectra), optical response and thermal transport, as well as the dynamics of polaron formation. Our approach takes into account the full quantum dynamics of the electrons and phonons and yields unbiased results for all electron-phonon interaction strengths and phonon frequencies, but is of particular value in the intermediate-coupling regime, where perturbation theories and other analytical techniques fail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call