Abstract

We present a numerical method for solving the Giesekus model without solvent viscosity. This paper is concerned with incompressible two-dimensional free surface flows and employs the finite difference method to solve the governing equations. The methodology involves solving the momentum equation using the implicit Euler scheme and an implicit technique for computing the pressure condition on the free surface. The nonlinear Giesekus constitutive equation is computed by a second order Runge–Kutta method. A novel analytic solution for channel flow is developed and is used to verify the numerical technique presented herein. Mesh refinement studies establish the convergence of the method for complex free surface flows. To demonstrate that the technique can deal with complicated free surface flows, the time-dependent flow produced by a fluid jet flowing onto a rigid surface is simulated and the influence of the parameter α on the jet buckling phenomenon is investigated. In addition, the simulation of the extrudate swell of a Giesekus fluid was carried out and the effect of the parameter α on the flow was similarly examined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.