Abstract
<abstract> <p>In this paper, an efficient technique called Optimal Homotopy Asymptotic Method has been extended for the first time to the solution of the system of fuzzy integro-differential equations of fractional order. This approach however, does not depend upon any small/large parameters in comparison to other perturbation method. This method provides a convenient way to control the convergence of approximation series and allows adjustment of convergence regions where necessary. The series solution has been developed and the recurrence relations are given explicitly. The fuzzy fractional derivatives are defined in Caputo sense. It is followed by suggesting a new result from Optimal Homotopy Asymptotic Method for Caputo fuzzy fractional derivative. We then construct a detailed procedure on finding the solutions of system of fuzzy integro-differential equations of fractional order and finally, we demonstrate a numerical example. The validity and efficiency of the proposed technique are demonstrated via these numerical examples which depend upon the parametric form of the fuzzy number. The optimum values of convergence control parameters are calculated using the well-known method of least squares, obtained results are compared with fractional residual power series method. It is observed from the results that the suggested method is accurate, straightforward and convenient for solving system of fuzzy Volterra integrodifferential equations of fractional order.</p> </abstract>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.