Abstract
This paper discusses the infinite horizon stochastic Nash games with state-dependent noise. After establishing the asymptotic structure along with the positive semidefiniteness for the solutions of the cross-coupled stochastic algebraic Riccati equations (CSAREs), a new algorithm that combines Newton’s method with two fixed point algorithms for solving the CSAREs is derived. As a result, it is shown that the proposed algorithm attains quadratic convergence and the reduced-order computations for sufficiently small parameter ε. As another important feature, the high-order approximate strategy that is based on the iterative solutions is proposed. Using such strategy, the degradation of the cost functional is investigated. Finally, in order to demonstrate the efficiency of the proposed algorithms, computational examples are provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.