Abstract

A fixed time step method is developed for integrating stochastic differential equations (SDE's) with Poisson white noise (PWN) and Lévy white noise (LWN). The method for integrating SDE's with PWN has the same structure as that proposed by Kim [Phys. Rev. E 76, 011109 (2007)], but is established by using different arguments. The integration of SDE's with LWN is based on a representation of Lévy processes by sums of scaled Brownian motions and compound Poisson processes. It is shown that the numerical solutions of SDE's with PWN and LWN converge weakly to the exact solutions of these equations, so that they can be used to estimate not only marginal properties but also distributions of functionals of the exact solutions. Numerical examples are used to demonstrate the applications and the accuracy of the proposed integration algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.