Abstract

This paper presents numerical solution of second order singularly perturbed self-adjoint boundary value problems using weighted residual method of Galerkin type. First, for the given problem, the residue was computed using appropriate approximated basis function which satisfies all the boundary conditions. Then, using the chosen weighting function, integrating the weighted residue over the domain and the given differential equation is transformed to linear systems of algebraic equations. Further, these algebraic equations were solved using Galerkin method. To validate the applicability of the proposed method, two model examples have been considered and solved for different values of perturbation parameter and with different order of basis function. Additionally, convergence of error bounds has been established for the method. As it can be observed from the numerical results, the present method approximates the exact solution very well. Moreover, the present method gives better accuracy when the order of basis function is increased and it also improves the result of the methods existing in the literature.
 Keywords: Singularly perturbed problems, Self-adjoint problem, Galerkin method, Boundary value problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.