Abstract
We consider the numerical solution of the large scale singular Sylvester equation of the form AX−XD⊤=E (or AXB⊤−CXD⊤=E), where the spectra Λ(A) and Λ(D) (or, Λ(A−λC) and Λ(D−λB)) have a nonempty intersection. Using appropriate invariant subspaces, the singular Sylvester equation is rewritten as four Sylvester equations, three of which are nonsingular and one singular. When the invariant subspaces are small, so are three of the equations (including the singular one) which can be solved efficiently. The fourth is large but nonsingular with structures and may be solved using the projection method with Krylov subspaces or techniques involving hierarchical matrices. Some numerical examples for the subspace method are provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.