Abstract

We put forward a new method for the solution of eigenvalue problems for (systems of) ordinary differential equations, where our main focus is on eigenvalue problems for singular Schrödinger equations arising for example in electronic structure computations. In most established standard methods, the generation of the starting values for the computation of eigenvalues of higher index is a critical issue. Our approach comprises two stages: First we generate rough approximations by a matrix method, which yields several eigenvalues and associated eigenfunctions simultaneously, albeit with moderate accuracy. In a second stage, these approximations are used as starting values for a collocation method which yields approximations of high accuracy efficiently due to an adaptive mesh selection strategy, and additionally provides reliable error estimates. We successfully apply our method to the solution of the quantum mechanical Kepler, Yukawa and the coupled ODE Stark problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.