Abstract

We develop a numerical solution algorithm of the nonlinear potential flow equations with the nonlinear free surface boundary condition. A finite difference method with a predictor-corrector method is applied to solve the nonlinear potential flow equations in a two-dimensional (2D) tank. The irregular tank is mapped onto a fixed square domain with rectangular cells through a proper mapping function. A staggered mesh system is adopted in a 2D tank to capture the wave elevation of the transient fluid. The finite difference method with a predictor-corrector scheme is applied to discretize the nonlinear dynamic boundary condition and nonlinear kinematic boundary condition. We present the numerical results of wave elevations from small to large amplitude waves with free oscillation motion, and the numerical solutions of wave elevation with horizontal excited motion. The beating period and the nonlinear phenomenon are very clear. The numerical solutions agree well with the analytical solutions and previously published results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.