Abstract

In this article, the one-dimensional parabolic equation with three types of integral nonlocal boundary conditions is approximated by the implicit Euler finite difference scheme. Stability analysis is done in the maximum norm and it is proved that the radius of the stability region and the stiffness of the discrete scheme depends on the signs of coefficients in the nonlocal boundary condition. The known stability results are improved. In the case of a plain integral boundary condition, the conditional convergence rate is proved and the regularization relation between discrete time and space steps is proposed. The accuracy of the obtained estimates is illustrated by results of numerical experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.