Abstract
In this paper, we propose a numerical scheme to solve one-dimensional Sine–Gordon equation related to many scientific research topics by using high accuracy multiquadric quasi-interpolation. We use the derivatives of a multiquadric quasi-interpolant to approximate the spatial derivatives, and a finite difference to approximate the temporal derivative. The advantages of the scheme are that it is meshfree, and in each time step only a multiquadric quasi-interpolant is employed, so that the algorithm is very easy to implement. The accuracy of our scheme is demonstrated by some test problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.