Abstract

In this paper, an efficient numerical technique is applied to provide the approximate solution of nonlinear stochastic Itô‐Volterra integral equations driven by fractional Brownian motion with Hurst parameter . The proposed method is based on the operational matrices of modification of hat functions (MHFs) and the collocation method. In this approach, by approximating functions that appear in the integral equation by MHFs and using Newton's‐Cotes points, nonlinear integral equation is transformed to nonlinear system of algebraic equations. This nonlinear system is solved by using Newton's numerical method, and the approximate solution of integral equation is achieved. Some theorems related to error estimate and convergence analysis of the suggested scheme are also established. Finally, 2 illustrative examples are included to confirm applicability, efficiency, and accuracy of the proposed method. It should be noted that this scheme can be used to solve other appropriate problems, but some modifications are required.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.