Abstract

During the 1986--1989 project period, two major areas of research developed into which most of the work fell: matrix-free'' methods for solving linear systems, by which we mean iterative methods that require only the action of the coefficient matrix on vectors and not the coefficient matrix itself, and Newton-like methods for underdetermined nonlinear systems. In the 1990 project period of the renewal grant, a third major area of research developed: inexact Newton and Newton iterative methods and their applications to large-scale nonlinear systems, especially those arising in discretized problems. An inexact Newton method is any method in which each step reduces the norm of the local linear model of the function of interest. A Newton iterative method is any implementation of Newton's method in which the linear systems that characterize Newton steps (the Newton equations'') are solved only approximately using an iterative linear solver. Newton iterative methods are properly considered special cases of inexact Newton methods. We describe the work in these areas and in other areas in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.