Abstract
AbstractWe study large‐scale, continuous‐time linear time‐invariant control systems with a sparse or structured state matrix and a relatively small number of inputs and outputs. The main contributions of this paper are numerical algorithms for the solution of large algebraic Lyapunov and Riccati equations and linear‐quadratic optimal control problems, which arise from such systems. First, we review an alternating direction implicit iteration‐based method to compute approximate low‐rank Cholesky factors of the solution matrix of large‐scale Lyapunov equations, and we propose a refined version of this algorithm. Second, a combination of this method with a variant of Newton's method (in this context also called Kleinman iteration) results in an algorithm for the solution of large‐scale Riccati equations. Third, we describe an implicit version of this algorithm for the solution of linear‐quadratic optimal control problems, which computes the feedback directly without solving the underlying algebraic Riccati equation explicitly. Our algorithms are efficient with respect to both memory and computation. In particular, they can be applied to problems of very large scale, where square, dense matrices of the system order cannot be stored in the computer memory. We study the performance of our algorithms in numerical experiments. Copyright © 2008 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.