Abstract

ABSTRACTThe key of the reproducing kernel method (RKM) to solve the initial boundary value problem is to construct the reproducing kernel meeting the homogenous initial boundary conditions of the considered problems. The usual method is that the initial boundary conditions must be homogeneous and put them into space. Another common method is to put homogeneous or non-homogeneous conditions directly into the operator. In addition, we give a new numerical method of RKM for dealing with initial boundary value problems, homogeneous conditions are put into space, and for nonhomogeneous conditions, we put them into operators. The focus of this paper is to further verify the reliability and accuracy of the latter two methods. Through solving three numerical examples of integral–differential equations and comparing with other methods, we find that the two methods are useful.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.