Abstract

In this article, we present a numerical approximation of the initial-boundary system of nonlinear hyperbolic equations based on spectral Jacobi-Gauss-Radau collocation (J-GR-C) method. A J-GR-C method in combination with the implicit Runge-Kutta scheme are employed to obtain a highly accurate approximation to the mentioned problem. J-GR-C method, based on Jacobi polynomials and Gauss-Radau quadrature integration, reduces solving the system of nonlinear hyperbolic equations to solve a system of nonlinear ordinary differential equations (SNODEs). In the examples given, numerical results by the J-GR-C method are compared with the exact solutions. In fact, by selecting relatively few J-GR-C points, we are able to get very accurate approximations. In this way, the results show that this method has a good accuracy and efficiency for solving coupled partial differential equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.