Abstract

This paper studies the fractional optimal control problems (FOCPs) with inequality constraints. Using the Caputo definition, an optimization method based on a set of basis functions, namely the fractional-order Bernoulli wavelet functions (F-BWFs), is proposed. The solution is expanded in terms of the F-BWFs with unknown coefficients. In the first step, we convert the inequality conditions to equality conditions. In the second step, we use the operational matrix (OM) of fractional integration and the product OM of F-BWFs, with the help of the Lagrange multipliers technique for converting the FOCPs into an easier one, described by a system of nonlinear algebraic equations. Finally, for illustrating the efficiency and accuracy of the proposed technique, several numerical examples are analysed and the results compared with the analytical or the approximate solutions obtained by other techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.