Abstract
ABSTRACTIn this paper, the fractional delay differential equation (FDDE) is considered for the purpose to develop an approximate scheme for its numerical solutions. The shifted Jacobi polynomial scheme is used to solve the results by deriving operational matrix for the fractional differentiation and integration in the Caputo and Riemann–Liouville sense, respectively. In addition to it, the Jacobi delay coefficient matrix is developed to solve the linear and nonlinear FDDE numerically. The error of the approximate solution of proposed method is discussed by applying the piecewise orthogonal technique. The applicability of this technique is shown by several examples like a mathematical model of houseflies and a model based on the effect of noise on light that reflected from laser to mirror. The obtained numerical results are tabulated and displayed graphically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.