Abstract
The explicit numerical method is used to trace the impact procedure of the tube columns impacted by a rigid body. The bar and rectangle tube models are both used to simulate the tube column. The elastic and elas-plastic impact load with different mass ratio and impact speed are obtained. The calculation results show that: for elastic models, the bigger the mass ratio and the higher the rigid body speed, the bigger the peak value of elastic impact load; at the same time, the more obvious the reduction effect of local buckling of rectangle tube on the peak value of impact load and the longer the contact time of tube model; so the peak value of impact load of the rectangle tube is not proportional to the rigid body speed. The stress wave in the tube causes a little difference between the load curves of tube model and bar model. For elas-plastic models, the higher the rigid body speed and the smaller the mass ratio, the bigger the peak value of impact load and the longer the contact time. The higher the rigid body speed, the bigger the difference between elastic and elas-plastic impact load peak value due to the expanding of plasticity. Because of the effect of local buckling, the peak value of elas-plastic impact load of rectangle tube is always lower than that of bar.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.