Abstract

We compute the numerical solution of the Bratu’s boundary value problem (BVP) on a Banach space setting. To do this, we embed a Green’s function into a new two-step iteration scheme. After this, under some assumptions, we show that this new iterative scheme converges to a sought solution of the one-dimensional non-linear Bratu’s BVP. Furthermore, we show that the suggested new iterative scheme is essentially weak w^{2}-stable in this setting. We perform some numerical computations and compare our findings with some other iterative schemes of the literature. Numerical results show that our new approach is numerically highly accurate and stable with respect to different set of parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.