Abstract
Numerical solutions of the full Navier–Stokes equations are used to investigate the steady and unsteady deformation of a bubble in a biaxial straining flow for Reynolds numbers in the range 0≤R≤400, and Weber numbers up to O(10). The steady-state bubble shape and the frequency of small amplitude oscillations of shape are both identical for biaxial and uniaxial straining flows in the potential flow limit. However, for a large, but finite Reynolds number, the bubble shape in the biaxial straining flow is found to be fundamentally different from the shape in uniaxial flows. This is shown to be a consequence of vorticity enhancement via vortex line stretching in the biaxial flow, which does not occur in the uniaxial flow. At the highest Reynolds number considered here, R=400, the steady-state bubble behavior for low W is qualitatively similar to the potential flow case, with a limit point for existence of the low W branch of steady solutions occurring at W∼6. However, in this case a second branch of steady solutions is found for larger W≥7, which exhibits oblate bubble shapes for large W, and has no counterpart in the potential flow limit. In unsteady flows, the behavior of bubble deformation is fundamentally different in the uniaxial and biaxial flows for both high Reynolds numbers and the potential flow limit. This suggests that breakup will occur in far different ways in the two cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.