Abstract

In the present paper gas flows with monodisperse and polydisperse particles in plane and axisymmetric nozzles are calculated by the inverse method [1, 2]. The gas velocity distribution is specified on the axis of symmetry of the nozzle, while the gas and particle parameters are specified in the entrance section. As a result of the numerical integration of a system of equations describing a flow of gas with condensate particles in it we determine the gas and particle parameters, the gas streamlines, and the particle trajectories with allowance for the mutual influence of the gas and particles. One of the gas streamlines is taken as the nozzle contour and the limiting trajectories and pure gas zone are found. A difference method is described which makes it possible to calculate the subsonic, transonic, and supersonic flow regions using a single algorithm, its features are noted, and the results of the calculation for monodisperse mixtures with particle diameters 1 and 5 μm and fractions by weight 0.3 are given. A comparison is made with the results of calculations by other methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.