Abstract
We present a numerical method for computing the solution of a partial differential equation (PDE) for modeling acoustic pressure, known as an extra-wide angle parabolic equation, that features the square root of a differential operator. The differential operator is the negative of an indefinite Schrödinger operator with a piecewise constant potential. This work primarily deals with the 3-piece case; however, a generalization is made the case of an arbitrary number of pieces. Through restriction to a judiciously chosen lower-dimensional subspace, approximate eigenfunctions are used to obtain estimates for the eigenvalues of the operator. Then, the estimated eigenvalues are used as initial guesses for the Secant Method to find the exact eigenvalues, up to roundoff error. An eigenfunction expansion of the solution is then constructed. The computational expense of obtaining each eigenpair is independent of the grid size. The accuracy, efficiency, and scalability of this method is shown through numerical experiments and comparisons with other methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.