Abstract

SUMMARY The numerical solution of a model describing a two-dimensional fluidized bed is considered. The model takes the form of a hyperbolic system of conservation laws with source term, coupled with an elliptic equation for determining a streamfunction. Operator splitting is used to produce homogeneous one-dimensional hyperbolic systems and ordinary differential equations involving the source term. The one-dimensional hyperbolic problems are solved using Roe’s method with the addition of an entropy fix. The numerical procedure is second-order in time and first-order in space. Second-order-accuracy in space is obtained using flux limiting techniques. Numerical experiments which show the development of bubbles in the bed are presented. The familiar kidney-shaped bubble, observed experimentally, is found when using the method which is second-order in space. On the same mesh, the first-order method produces bubbles which are no longer kidney-shaped. © 1998 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call