Abstract
Abstract An upwind and a Lax-Wendroff scheme are introduced for the solution of a one-dimensional non-local problem modelling ohmic heating of foods. The schemes are studied regarding their consistency, stability, and the rate of convergence for the cases that the problem attains a global solution in time. A high resolution scheme is also introduced and it is shown that it is total-variation-stable. Finally some numerical experiments are presented in support of the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.