Abstract

The shifted Jacobi-Gauss-Lobatto pseudospectral (SJGLP) method is applied to neutral functional-differential equations (NFDEs) with proportional delays. The proposed approximation is based on shifted Jacobi collocation approximation with the nodes of Gauss-Lobatto quadrature. The shifted Legendre-Gauss-Lobatto Pseudo-spectral and Chebyshev-Gauss-Lobatto Pseudo-spectral methods can be obtained as special cases of the underlying method. Moreover, the SJGLP method is extended to numerically approximate the nonlinear high-order NFDE with proportional delay. Some examples are displayed for implicit and explicit forms of NFDEs to demonstrate the computation accuracy of the proposed method. We also compare the performance of the method with variational iteration method, one-legθ-method, continuous Runge-Kutta method, and reproducing kernel Hilbert space method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.