Abstract

2D linear elastostatic problems formulated in Cartesian coordinates by potential functions are numerically solved by network simulation method which allows an easy implementation of the complex boundary conditions inherent to this type of formulation. Four potential solutions are studied as governing equations: the general Papkovich–Neuber formulation, which is defined by a scalar potential plus a vector potential of two components, and the three simplified derived formulations obtained by deleting one of the three original functions (the scalar or one of the vector components). Application of this method to a rectangular plate subjected to mixed boundary conditions is presented. To prove the reliability and accurate of the proposed numerical method, as well as to demonstrate the suitability of the different potential formulations, numerical solutions are compared with those coming from the classical Navier formulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call