Abstract
In this paper, we present a discrete duality finite volume (DDFV) method for 2-D flow problems in nonhomogeneous anisotropic porous media under diverse boundary conditions. We use the discrete gradient defined in diamond cells to compute the fluxes. We focus on the case of Dirichlet, full Neumann and periodic boundary conditions. Taking into account the periodicity is the main new ingredient with respect to our recent works. We explain the procedures step by step, for numerical solutions. We develop a matlab code for algebraic equations. Numerical tests were provided to confirm our theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.