Abstract

AbstractThe heat transfer assessments in a Sisko nanofluid flow over a stretching surface in a Darcy–Forchheimer porous medium with heat generation and thermal radiation are studied. The numerical analysis technique is used to assess the governing nonlinear equations of the model. The influence of Forchheimer number, porosity, heat generation, radiation, and material parameters is examined. The outlines of Nusselt number and skin friction coefficient corresponding to pertinent parameters are revealed. The comparison of Nusselt number outlines of working fluid and Newtonian fluid is depicted. From the analysis, it has been examined that with the increase in Forchheimer number and material parameter values, heat transfer function decreases, whereas heat transfer characteristics of Sisko nanofluid increase with heat generation and material parameters. Moreover, working fluid velocity outlines depreciate when there is an increase in porosity parameter for both shear‐thinning and shear‐thickening. The comparison of this study with previous research has been conducted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.