Abstract
<abstract> <p>The present study contains examination on partial differential equations narrating heat transfer aspects in magnetized staggered cavity manifested with wavy insulated baffles. The nanoparticles namely Aluminium oxide are suspended in the flow regime within staggered enclosure having purely viscous fluid. The flow is modelled mathematically in terms of partial differential equations and the finite element is used to discretized the flow differential equations. The effects of several parameters such as Hartmann number $ \left(0\le Ha\le 100\right) $, Volume fraction $ \left(0.00\le \phi \le 0.08\right), $ Rayleigh number $ \left({10}^{3}\le Ra\le {10}^{5}\right), $ and angle of inclinaton $ \left({0}^{o}\le \gamma \le {60}^{o}\right) $ on the thermal flow and distribution of nanomaterials for natural convection are inspected. It is calculated how much Ha will affect velocities and isotherms wit h $ Ra = {10}^{4} $ and $ \phi = 0.02 $. With Ha = 20 and $ \phi $ = 0.02, the effect of Ra on velocity and isotherms is also estimated. The average Bejan number and average Nusselt number against Hartmann number are investigated. When the walls move in an opposite direction, line graphs of velocity distribution are created for both the u and v components. The presence of Hartmann number leads to increase in Bejan number while, opposite behavior can be observed in case of average Nusselt number. When the volume fraction is large, the velocity increases significantly. The flow strength is greater when the Rayleigh number is smaller. On the other hand, as Ra drops, or when $ Ra = {10}^{4} $, flow strength drops.</p> </abstract>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.