Abstract

In the present study, one-dimensional advection-dispersion equation with variable coefficients is solved numerically with help of PDEPE in a finite porous domain. The pollutant is entering from the left end of the domain along the direction of the flow. Two different types of groundwater velocities have been considered, one rapidly decreasing with position and time and the other one being of sinusoidal nature over position and time. The dispersion coefficient is taken proportional to the groundwater velocity. Transport is included the first order decay and zero-order production parameters being proportional to the exponentially decreasing function with position and time and also being of sinusoidal nature over position and time. The nature of pollutant and porous medium are considered chemically non-reactive. Initially, porous domain is considered not to be solute free. Numerical solutions are obtained for uniform and varying type point sources. In heterogeneous porous media, variations in the parameters of solute transport such as: seepage velocities, dispersion coefficients etc. can be easily deal through numerical models. The effects of various physical parameters on solute concentration profiles are illustrated graphically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.