Abstract

The cervical spine is a structure subject to various vertebral injuries, namely, herniation of intervertebral discs and osteoporosis. Nowadays, several segments of society are vulnerable to these diseases that affect spine motion especially elderly people and women. Hence, various designs of cervical artificial discs are in use or under investigation claiming to restore the normal kinematics of the cervical spine. In this work, it is proposed to minimize the stress level by numerical size optimization in the Mobi-C cervical spine prosthesis to improve their biomechanical performances. For this aim, design of experiment (DoE) is employed as an optimization technique to investigate three geometrical parameters of the prosthesis design. Accordingly, DoE optimization allowed to minimize the equivalent stress value on Mobi-C from 20.3 MPa to 17.856 MPa corresponding to a percentage decrease of 12% from the original geometry. This provides an advantage for the durability of the prosthesis and also for the bone by reducing stress concentration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.