Abstract

Based on a three-level model for quantum dot (QD) lasers, the characteristics of the photonic microwave generated by a QD laser simultaneously subject to optical injection and optical feedback are numerically investigated. First, the performance of the microwave signal generated by an optical injected QD laser operating at period one state are analyzed, and the mappings of the frequency and intensity of the generated microwave in the parameter space of the frequency detuning and injection strength are given, which are roughly similar to those reported experimentally. Next, an optical feedback loop is further introduced to the optically injected QD laser for compressing the linewidth of the microwave signal, and the results demonstrate that the linewidth of the generated microwave can be reduced by at least 1 order of magnitude under suitable feedback parameters. Finally, the effect of the linewidth enhancement factor on the generated microwave signal is analyzed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call