Abstract

The effect of flow oscillation on the stability of plane channel flow is studied via numerical simulation. For weak oscillation, the ratio of the Stokes layer thickness to the distance from the wall to the critical layer in steady flow provides the best normalization for the mean-flow frequency. Maximum growth rates occur when the instantaneous velocity profile has large regions of positive curvature. The effect of oscillation is generally stabilizing. However, at low frequencies, TS wave energies may vary by 106 in a cycle and irreversible secondary instability may be produced at the peak.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.