Abstract

In this paper we review the current predictions of numerical simulations for the origin and observability of the warm hot intergalactic medium (WHIM), the diffuse gas that contains up to 50 per cent of the baryons at z∼0. During structure formation, gravitational accretion shocks emerging from collapsing regions gradually heat the intergalactic medium (IGM) to temperatures in the range T∼105–107 K. The WHIM is predicted to radiate most of its energy in the ultraviolet (UV) and X-ray bands and to contribute a significant fraction of the soft X-ray background emission. While O vi and C iv absorption systems arising in the cooler fraction of the WHIM with T∼105–105.5 K are seen in FUSE and Hubble Space Telescope observations, models agree that current X-ray telescopes such as Chandra and XMM-Newton do not have enough sensitivity to detect the hotter WHIM. However, future missions such as Constellation-X and XEUS might be able to detect both emission lines and absorption systems from highly ionised atoms such as O vii, O viii and Fe xvii.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.