Abstract

There is a significant interest in improving the performance of rotors under adverse operating conditions. However, there is a very limited understanding of the performance implications on two-dimensional (2D) airfoils and rotor blades under adverse effects of rainfall. Furthermore, the fundamental physical phenomena causing the loss in performance are not clearly understood. In this study, low-fidelity models are first developed to rapidly estimate the water layer formation on 2D airfoils and assess the resulting impact on lift and drag characteristics. The low-fidelity simulations are also useful to obtain quick estimates of water layer thickness as a function of liquid water content and droplet diameter. Subsequently, computational fluid dynamics studies for 2D airfoils and a small-scale rotor in hover are done to obtain more accurate estimates of the effects of rain on airfoil performance and match test data where available. Higher fidelity parametric studies for various airfoils were conducted by varying angles of attack, the liquid water content in the rain droplets, and the droplet diameters to capture trends in performance degradation. The resulting trends match the trends from the test data reasonably well. The higher fidelity airfoil loads are subsequently used within a classical combined blade element-momentum model to assess the loss of performance attributable to rain for a small-scale rotor. The present studies indicate a significant loss in thrust production, a rise in the power requirement, and a reduction in the figure of merit for small-scale rotors caused by rain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call