Abstract

AbstractDeformation microstructures in γ-TiAl + α2Ti3Al based fully lamellar (FL) and nearly lamellar (NL) microstructures have been simulated using micro-mechanical methods. The deformation is extremely inhomogenous resulting in a large accumulation of hydrostatic stresses at the grain boundaries, thereby promoting intergranular fracture initiation. In particular, the increase in ductility with increasing equiaxed γ-grain volume fraction (with compliant deformation characteristics) in nearly lamellar alloys is explained by the reduction of the hydrostatic stress buildup at the boundaries, consequently mitigating fracture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.